Contributions of Memory Brain Systems to First and Second Language

Michael T. Ullman
Departments of Neuroscience, Linguistics, Psychology and Neurology
Georgetown University
michael@georgetown.edu
Collaborators and Funders

Georgetown
Claudia Bonin
Harriet Bowden
Claudia Brovetto
Helen Carpenter
Jocelyn Curchack
John Drury
Ivy Estabrooke
Joshua Hartshorne
Sarah Lee
Christopher Maloof
Matthew Moffa
Kara Morgan-Short
Kaori Ozawa
Elizabeth Prado
Cristina Sanz
Matthew Walenski
Robbin Wood

MIT
Suzanne Corkin
Joseph Locascio

Harvard/MGH
John Growdon
Walter Koroshetz
Steven Pinker
Jeremy Schmahmann

Other
Stefano Cappa (Milan, Italy)
Myrna Gopnik (McGill; emeritus)
Greg Hickok (UC Irvine)
Tracy Love (UC San Diego)
Helen Neville (Univ of Oregon)
Aaron Newman (Dalhousie)
Elizabeth Pierpont (U. Wisconsin)
Karsten Steinhauer (McGill)
David Swinney (UC San Diego)
Heather van der Lely (London)

Funding
NIH: R01 MH58189; R01 HD049347; R03 HD050671
NSF: SBR-9905273; BCS-0519133; BCS-0001961
Defense: DAMD-17-93-V-3018/3019/3020, DAMD-17-99-2-9007
McDonnell Foundation
National Alliance for Autism Research
Mabel Flory Trust
Pfizer, Inc.
Learning an L2 is Hard

Late learners do not usually attain native-like levels

But some aspects of L2 easier to learn than others

- Relatively easy:
 - learning words

- Difficult: not just pronunciation, but also
 - grammar (morphology, syntax)

Nevertheless, evidence suggests that native-like abilities in L2 can indeed be attained, even for grammar

(Birdsong, 1999; Doughty and Long, 2003; Ullman, 2001b, 2005)
Some Questions

- Why is L2 learning hard?

- Why might word-learning be easier than grammar?

- What are the neurocognitive underpinnings of L2 learning and processing?

- Do these differ for learning words and grammar?

- Do they differ for achieving low and high proficiency?

- Can we manipulate the biology or cognition of L2 learning to improve L2 proficiency?
A Neurocognitive Approach

1. Consider data, theory, and methods from:
 • Study of L1 (linguistic theory, psycholinguistics)
 • Cognitive neuroscience and related fields (eg, genetics)
 • Second Language Acquisition (SLA)

2. Develop and test L2 hypotheses based on findings and theories from across these fields
Neurocognitive Theories of L2

- Paradis
- MacWhinney
- Friederici
- Ellis
- Clahsen

 - Takes into account data, theory and methods from across disciplines
 - Focuses on the dependence of language on well-studied brain systems
Declarative Memory System

- Learning & processing of facts, events
- Specialized for arbitrary relations
- Explicit and implicit knowledge
- Medial & lateral temporal-lobe; frontal regions (BA 45/BA 47, BA 10)
- Modulated by estrogen, acetylcholine
- Genes: BDNF, possibly others
Procedural Memory System

- Learning & control of cognitive and motor “skills” (e.g., riding a bicycle)
- Specialized for sequences
- Implicit knowledge
- Left frontal (BA 44/premotor)-basal ganglia circuits; superior temporal cortex
- Modulated by dopamine
- Genes: possibly DAT, others
First Language (L1)
Declarative/Procedural Theory

Declarative memory system

Lexicon
Memory store: \textit{(at least)}
all word-specific information:
- simple words (cat)
- irregulars: (dig-dug)
- complements (hit [direct object])

Procedural memory system

Grammar
Rule-governed hierarchical and sequential (de-)composition of complex forms:
- syntax (the cat; NP VP)
- morphology (regulars: walk -ed)
Empirical Evidence

1. Psycholinguistic
 • Frequency effects
 • Similarity (neighborhood) effects
 • Imageability Effects
 • Priming effects
 • Working memory effects

2. Neurological
 • Aphasia (anterior aphasia, posterior aphasia)
 • Neurodegenerative disease (AD, PD, HD)
 • Developmental disorders (SLI, autism, other)

3. Neuroimaging
 • Electrophysiological: ERP
 • Hemodynamic: fMRI, PET

4. Molecular
Psycholinguistic

Frequency effects:
- **Irregulars**: Consistent frequency effects
- **Regulars**: No consistent frequency effects

Evidence Suggests:
- **Irregulars**: Retrieved from memory
- **Regulars**: Can be (de)composed in real time to/from their parts
Neurological: Aphasia

Posterior Aphasia

Lesions: Left temporal regions

Behavior:
- Impaired at content words, conceptual knowledge, irregulars
- No agrammatism, no difficulty with regulars, no motor problems

Anterior Aphasia

Lesions: Left inferior frontal and basal ganglia structures

Behavior:
- Agrammatism, problems with regulars, motor deficits
- Relative sparing of content words, irregulars, conceptual knowledge

Compensation: Storage of complex forms (eg, walked) in lexical memory

(Goodglass, 1993; Alexander, 1997; Ullman, et al., 1997; Ullman, Pancheva, et al., in press)
Neurodegenerative Diseases

Alzheimer’s Disease

Degeneration: Temporal > frontal (Broca’s/premotor)/basal-ganglia
Behavior:
• Impaired at learning new, using old content words, facts, irregulars
• Sparing of motor & cognitive skills, regulars, maybe syntax

(Please refer to specific studies for detailed information.)

Parkinson’s Disease

Degeneration: Primarily frontal/basal-ganglia
Behavior:
• Impaired at motor & cognitive skills, syntax, regulars
• Relatively spared: learning new, using old content words, facts, irregulars

(Please refer to specific studies for detailed information.)
Event-Related Potentials (ERPs)

ERPs are the EEGs following stimuli (e.g., words).

Lexical/Semantic processing:
- Central Negativity (N400)
 - Temporal lobe

Grammar processing difficulties:
- Left Anterior Negativity (LAN)
 - Left frontal
- Central/posterior positivity (P600)
 - Basal ganglia

Lexical processing:
• Temporal lobe regions;
 BA 45/47 for retrieval

Grammatical processing:
• Broca’s (especially BA 44);
 the basal ganglia;
 superior/anterior temporal cortex

(Damasio et al., 1996; Embick et al., 2000; Indefrey et al. 1999; Moro et al., 2001; Newman et al., 2001; Ni et al., 2000; Stromswold et al. 1996; Friederici, 2002, 2004)
Data Suggests That in L1

<table>
<thead>
<tr>
<th>Language</th>
<th>Lexicon</th>
<th>Grammar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computation</td>
<td>Associative memory</td>
<td>Rule-governed composition</td>
</tr>
<tr>
<td>Brain Systems</td>
<td>Declarative Memory</td>
<td>Procedural Memory</td>
</tr>
<tr>
<td>Non-Language</td>
<td>Facts, Events</td>
<td>Motor, Cognitive skills</td>
</tr>
<tr>
<td>Specialized for</td>
<td>Arbitrary relations</td>
<td>Sequences</td>
</tr>
<tr>
<td>Anatomy</td>
<td>Medial & lateral temporal cortex; BA 45/47, BA 10</td>
<td>Left BA 44/premotor-basal ganglia circuits; superior temporal</td>
</tr>
<tr>
<td>Molecular</td>
<td>Estrogen; acetylcholine</td>
<td>Dopamine</td>
</tr>
<tr>
<td>Genetic</td>
<td>BDNF</td>
<td>DAT?</td>
</tr>
</tbody>
</table>

(for reviews and discussion, see Ullman et al., 1997; Ullman, 2001a, b, 2004, 2005; Ullman & Pierpont 2005)
Late-Learned
Second Language (L2)
Declarative/Procedural Theory: Low L2 Experience

Declarative memory system

- All word-specific information
- Stored complex structures (walked)
- Declarative memory based rules

Procedural memory system

Language

Grammar

Little or nothing learned and processed here
Declarative/Procedural Theory: High L2 Experience (L1-Like)

Declarative memory system
- Lexicon
 - Memory store: (at least)
 - all word-specific information:
 - simple words (cat)
 - irregulars: (dig-dug)
 - complements (hit [direct object])

Procedural memory system
- Grammar
 - Rule-governed hierarchical and sequential (de-)composition of complex forms:
 - syntax (the cat; NP VP)
 - morphology (regulars: walk -ed)
Frequency Effects

Lower L2 experience (Brovetto and Ullman, 2001)
- Subjects: L2 Learners of English (mean of 6 years exposure)
- Results: Frequency effects for irregulars and regulars
- Suggests: Irregulars and regulars both stored

Higher L2 experience (Birdsong and Flege, 2001)
- Subjects: L2 Learners of English (10 to 16 years of exposure)
- Results: Frequency effects for irregulars but not regulars (L1-like)
- Suggests: Irregulars stored, not regulars (i.e., like in L1)
Neurological: Focal lesions, Alzheimer’s & Parkinson’s

Temporal-lobe damage (herpes simplex, Alzheimer’s)
- L2 worse than L1, including syntax

Frontal or basal-ganglia damage (left focal lesions, Parkinson’s)
- Grammar: L1 and highly-practiced L2 worse than less-practiced L2
- Lexicon: No L1/L2 difference

Event-Related Potentials

Lexical/semantic processing

• Low and high proficiency L2:
 • N400s present

Grammatical processing

• Lower proficiency L2:
 • No LANs; sometimes N400-like negativities
 • P600s generally present

• Higher proficiency L2:
 • LANs (including in artificial language)
 • P600s

Second Language

Hemodynamic Neuroimaging

Lexical/semantic processing tasks:
- No L1/L2 differences in activation patterns
- Minimal L1/L2 differences (likely reflecting articulation, retrieval)
 (Klein et al 1995; Chee et al 2001; De Blesser et al 2003)

Sentence (syntactic) processing tasks:
- Greater activation in declarative memory structures in L2 than L1 –
 especially in lower proficiency L2 learners
 (Perani et al 1996; Perani et al 1998, Exp 1; Dehaene et al 1997; Opitz & Friederuci, 2002; Wartenburger et al 2003; Exp 1)

- Greater activation in procedural memory structures (left BA 44) in L2 than L1 - but only in higher proficiency L2 learners
 (Wartenburger et al 2003, Exp 2; Ruschemeyer et al 2005; Opitz & Friederuci, 2002)

- Artificial language learning, within-subjects (Opitz and Friederici, 2002)
 - low-proficiency: medial and lateral temporal activation
 - high-proficiency: activation in left BA 44
1. Linguistic representations with arbitrary relations:
 • *Always* seem to be stored in lexical/declarative memory – in L1 & L2.

2. Rule-governed complex representations:
 • In L1, and in high experience L2:
 Generally put together by the grammatical/procedural system
 • In lower experience L2:
 Depend largely on lexical/declarative memory
Current & Future Directions

• **Individual differences in L2 learning:**
 - sex differences, age, handedness, genotype, etc.

• **Improving L2 learning:**
 - selecting high-aptitude individuals
 - learning-context and pharmacological manipulations