A cognitive perspective on language learning in young and older adults

Henk Haarmann

ILR Plenary Session, Foreign Service Institute (February 15, 2008)

Schema

Outcome optimization Older & younger adults

Memory & cognitive control

Cognitive aging: *healthy* vs. pathological

Healthy cognitive aging

- Working memory
- Inhibition (early, balanced bilinguals)
- Attention
 - Selective, Divided, Alternating, Sustained
- Episodic memory
 - Free recall, temporal order memory, source memory
- Processing speed
 - Simple perceptual
 - Complex cognitive

Healthy cognitive aging

- Learning
 - Declarative memory
 - Procedural memory
 - Explicit learning (versus implicit learning)
 - Performance level (versus learning rate)

Next topic

Outcome optimization Older & younger adults

Age-related language declines have been well documented

	young	older
dementia		
healthy		

Age-related language declines

- Comprehension
 - Syntactic complexity/ambiguity
 - Anaphoric reference
 - Rapid presentation of linguistic stimuli
 - Noisy conditions
- Spontaneous speech
 - Syntactic complexity
 - L2 pronunciation (Larson-Hall, 2006)
- Naming
 - Tip of the Tongue (TOT)
 - Nouns & action verbs (isolation vs. context)

Age-related language declines

- Language learning in adults
 - Gradual decline in language learning ability well into adulthood
 - Laboratory-based learning (e.g., vocabulary learning) (Service & Craik, 1993)
 - Classroom instructed learning (Bialystok and Hakuta, 1994; Perales & Cenoz, 2002; Wang, 1998)
 - Artificial grammar learning (Midford & Kirsner, 2005)
 - Impaired: Explicit learning, simple grammar
 - Relatively preserved: Implicit learning, complex grammar (cf. non-linguistic learning: D'eridita & Hoyer, 1999)
 - Knowledge of prior languages

Age-related language declines

- Foreign language processing
 - Shows greater decline than native language processing
 - Michel Paridis' explanation:
 - Child language learning
 - implicit memory, automatic processing
 - Adult language learning
 - explicit memory, controlled processing
 - » Greater vulnerability to distraction and overload, especially in older adults, with deficit in controlled processing

Other considerations

- Non-cognitive factors: Anxiety
 - Negative impact on learning a second language (review in Peralis & Cenoz, 2002)
 - Greater in older than young adult language learners (Bailey et al.)
- Inter-individual variability
 - Larger within group of older than young adults
- Research methodology
 - Cross-sectional vs. longitudinal design
- Non age-related factors
 - Gubarchuk & Kemper (1997) examined learning of Russian (proficiency & syntactic production)
 - The following factors had a greater impact than age
 - Education level
 - Knowledge of English and other languages

Program optimization

- Reduced cognitive control impairs language learning & use
- Individual differences (IDs) in cognitive control are due to healthy aging but also occur within age-groups

 Measures aimed at <u>compensating for reduced cognitive</u> <u>control</u> should help **both** young and older
individuals with reduced cognitive control

Potential measures

Mental fitness training

- to improve cognitive control functions (Ball et al., 2002, JAMA)

Immersion-like settings

for minimizing need for effortful suppression of the native language

Individualized graduated interval training

for more successful retrieval from long-term memory

Distributed practice / context variation

 for minimizing similarity-based interference & promoting transfer from context-dependent episodic memory to context-independent semantic memory

Potential measures continued

- Extended time on task \ more efficient use of time
 - for deeper memory encoding
- Reduction in distractions
 - for reducing need for effortful inhibitory control
- Heightened context predictability
 - for reducing conceptual-level processing load
- Slower presentation rates, exaggerated prosody, & visible articulatory movements
 - for coping with slower perceptual speed
- Smarter methods for engaging implicit memory / procedural memory
 - to reduce reliance on error-prone cognitively-controlled processing

Potential measures (final slide)

Use of computer chat rooms

– for minimizing working memory load while practice different components of speech planning (Payne and Whitney, 2002).

